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An algorithm is given for the calculation of the wave functions (to within -lo-‘) 
and the separation constants h&k, R) (to within ~10-*~) of the continuum of the two- 
center problem with Coulomb interaction. The phases d&k, R) of the solutions to the 
radial equation are found as functions of the momentum k and the intercenter spacing R. 
The constructed angular II,,&; k, R) and radial I&,,([; k, R) Coulomb spheroidal 
functions are a natural generalization of the Coulomb functions Ft(y, kr) of the one- 
center problem. 

INTRODUCTION 

The wave functions of the continuum for the two-center problem are necessary 
for the solution of various quantum mechanical problems: scattering of electrons 
on two Coulomb centers [l], photoionization of molecules [2], three-body problem 
with Coulomb interaction [3], etc. 

The wave functions of the continuum for the two-center problem with charges 
Z, = Zz = 1 were first found by Bates et al. [2]. The scattering on two Coulomb 
centers with different charges Z, # Z, was considered by Shimizu [4], who also 
tabulated the eigenvalues of the angular equation for certain values of the param- 
eters of the problem. 

The present paper contains a description of the algorithm for the calculation 
of the eigenvalues of A,,&, R) of the angular equation and the wave functions 
r$,,([, 7, 9; k, R) of the continuum of the two-center problem. This paper is 
a direct continuation of the studies of [5] dealing with the calculation of the 
eigenvalues and the wave functions of the discrete spectrum of the two-center 
problem. The routine is written in Fortran- as applied to the computer CDC-6200. 

The wave functions Q$(r; R) of the continuum of the two-center problem are 
defined as solutions to the Schrijdinger equation 
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where r, and r, are the distances of a negative particle (electron) from positive 
charges (nuclei) 2, and 2, spaced from each other by R, and Ek = k2/2 is the 
energy of the electron in a state with momentum k. 

In spheroidal coordinates 

5 = (I1 + r,)lR, 

the solution &(r; R) is represented in the form of the product of the functions 

htr; R) = A&, rl, K k RI 

where m = / m 1 is an integer, and (I is equal to the number of zeros of the function 
B&v; k, R) in the interval (- 1, 1). 

We call the functions 17,&t; k, R) and R -,,(q; k, R) radial and angular Coulomb 
spheroidal functions (by analogy with the Coulomb functions F,(y, kr) of the 
one-center problem [6]. They are defined as regular solutions of the equations 

+ [--hm, + c”(S” - 1) + a5 - ,,“” , K&Y k, RI = 0, 1 (44 I Qn,t1; k, R)l < 00, Rn,(& k, N z 0, l<Lf<C% 

+ [Am* + c2t1 - T2> + brl - & Sm&; k, R) = 0, 
(4’4 

The notation is as follows. 

a = R(Z2 + Z,), b = R(Z, - Z,), c = kRf2 = (R/2)(2E,)‘/2. (4~) 

The normalization N&k, R) is determined by the condition 
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where 

j- dT = W3/8) j-a 4 I’ d7 s,‘” dq(f2 - q). 1 -1 
(6) 

The solution of Eqs. (4) can be considered as a generalization of certain special 
functions. In particular, for a = b = 0, Eqs. (4) turn into the ones for prolate 
sheroidal functions [7], for c = b = 0, Eq. (4b) turns into the equation for the 
associated Legendre polynomial, and for c +O, a-+0, a/2c- const., Eq. (4a) 
turns into the equation determining the Coulomb functions [6]. 

In the general case c # 0, a # 0, b # 0, little is known about the solutions of 
Eqs. (4) and the algorithms for their numerical finding are not sufficiently well 
developed. 

On the complex plane z, Eqs. (4) are identical and differ only by the domain of 
definition of the solutions. The solutions U(Z) of Eqs. (4) are analytic functions 
on the z-plane with the cut joining the singular points of the equation: two regular 
(z = *l) and one irregular (z = CQ). The indices of the regular points z = fl 
are &m/2 and the regular solutions in their vicinity behave like 

u(z) - (1 - zy2, z- II, 

the asymptotic of the singular solutions for z -+ i-1 is of the form 

u(z) N ln(1 - z2), 

u(z) N (1 - 22)-m/2, 

for m = 0, 

for m # 0. 

The asymptotic behavior in the irregular point z = cc is of the form 

u(z) - (l/z){ fi(cz - (b/2c) In ~cz)}, z--t w. 

For c = 0, b # 0, the point z = co remains irregular: 

U(Z) - z-3/4 exp{ f2(-bzY2). 

CALCULATION OF THE EIGENVALUES i&(k,R) 

The eigenvalues h = X,&k, R) are found from the angular solution of Eq. (4b) 
and depend on the discrete set of the quantum numbers (m, q) = 0, 1,2,. . . and 
the two continuous parameters 0 < k < w and 0 < R < w. To calculate them, 
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the solution of the Sturm-Liouville problem (4b) is sought in the form of a series 

E,,Jv; k, R) = e-ic(l-n) C d,(k, R) P:“,,(T), hl=O, do= 1, (7) 
%T=O 

where P,m+,($ are the associated Legendre polynomials defined by the Rodrigues 
formula [7]. Inserting the expansion (7) in Eq. (4b) leads to three-term recurrent 
relations for the coefficients d, 

where 

P&&+1 - K&s + hd,-, = 0, (8) 

ps = 0 + 2m + I)[b - Ws + m + 1)1/W + m) + 31, 
K, = --A + (3 + m>(s + m + I>, 
6, = s[b + 2ic(s + m)]/[2(s + m) - 11. 

(9) 

The eigenvalues h = A&k, I?) are the roots of the transcendent equation y(X) = 0, 
the left-hand side of which can be represented as an infinite chain fraction [S] 

PC&l 
Jo) = Ko - -y (10) 

The function y(h) is real since it depends on K, and psSs+l alone. 
To &rd the roots of the equation y(h), we have used the Newton-Raphson 

method realized in the program with double accuracy. As an initial approximation 
for the eigenvalues A+&k, R), the following expansion is used. 

L& RI = w + 1) - 
(P - m2)(b2 + 4c212) 

21(2/ + ,)(2[ _ 1) 

+ [(f + 1)” - m2][b2 + 4c2(1 + 1)2] 
2(1 + 1)(21 + I)(21 + 3) ’ (11) 

which follows from Eqs. (10) in the limit R + 0. For other calculation details, 
see [5]. 

For the majority of physical applications, it is sufficient to know the h&k, R) 
values within a relative accuracy l - 1O-8 - lo-lo. Thus, the number of the 
terms of the chain fraction (10) does not exceed 100, whiIe the time of calculation 
of A.&k, R) in the interval R = 0.025 (0.025) 20 for fixed m, q, and k is about 
15 min. Figure 1 gives the results of calculations of X,,(k, R) for different sets of 
m, q, and k in the case Z, = 1 and Z2 = 2. 
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h,, ( k,R) 
3 6- L 

f-------2 
0 

--L.-I 

-2' k=O -1 

FIG. 1. The dependencies h,(k, R) on R at fixed values of k and different sets of quantum 
numbers: (1) m = 0, q = 0; (2) m = 0, q = 1; (3) m = 0, q = 2; (4) m = 1, q = 1. At R 40, 
L&k, R) +I([ + I). 

CALCULATION OF THE FUNCTIONS S&q; k,R) 

The algorithm of calculation of the angular Coulomb spheroidal functions of 
the discrete spectrum of the two-center problem suggested in [5] is not efficient 
in the case of the continuum since at R > 1, the appropriate series representing 
the functions E&T; k, R) converges very slowly. For example, in the expansion (7), 
at c - 10, d, - 500 already for s - 20, and the coefficients d, change their sign 
and increase rapidly in absolute value. Therefore, it is better to find the functions 
Smo(q; k, R) by a direct integration of Eq. (4b) using, near the singular points 
7 = f 1, suitable expansions. For example, near n w - 1 

E&q; k, R) = (1 - n2)mp ‘$ a,(1 + #, 
S=O 
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where the coefficients a, are found from the four-term recurrent relations 

pi&+1 + qJ, + r,d,-l + t,L = 0; (13) 

in this case, d-, = de, = 0, do = 1. 
The following notation is introduced. 

ps = 2(s + l)(s + m + 11, 

qs = -l---h + b + m(m + 1) + 4s + 2m + 111, 

r, = 2c2 $ b, 

t, = -c2. 

(14) 

To ensure a relative accuracy of calculation of the functions E N lo-‘, it is sufficient 
to take S, = 4, 1 + 7 = 1O-6 and the integration step LIT = 2-12. The normaliza- 
tion of the solutions naturally can be determined by the relation 

I 
1 

Em,a,(q; k, R) E&q; k, R) dq = a,,, . (15) 
-1 

z:,, (7; k,R) -‘,, (‘J ; k.R) 

FIG. 2(a, b, c). The angular Coulomb spheroidal functions -F,,(T; k, R) normalized by (15) 
at iixed values k, R, m, q; 2, = 1, Z, = 2. 



CONTINUUM FOR TWO-CENTER PROBLEM 189 

When R + 0, Eq. (4b) turns to the equation for the associated Legendre poly- 
nomials P m+Q(~). Thus, the following relation (I = m + q) takes place. 

(16) 

from which the sign of the functions &, 7, ( . k, R) is determined. Figs. 2a-2c give 
the functions &&q; k, R) normalized by condition (15) for different k and R 
and for different sets of quantum numbers m and q. 

q=a m=2 

q=1 rn=l 
9=2 m=o 

q-1 m=o 

9'0 ml=, 

!5 

7'0 n=o 

FIG. 3. The functions A,,,JO,b) at different sets of quantum numbers m and q. 

FIG. 4. Eigenvalues of A,,,&, b) as a function of the parameter c at fixed values b, m, and q. 
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The Sturm-Liouville problem can be considered independently of the initial 
three-dimensional problem. In this case, the eigenvalues A,,@, R) = X,&c, 6) are 
functions of the parameters c and b. For b = 0, Eq. (4b) turns to the equation 
for prolate spheroidal functions [7] and its solutions coincide with the spheroidal 
functions S&c, 7). 

In the inverse extreme case, c -+ 0, b j; 0, the solutions of Eq. (4b) are used to 
express the wave functions of the electron in the finite dipole field [8]. Figure 3 
gives the X&C, b) values for c = 0 as functions of the parameter b. Figure 4 also 
gives the h&c, b) values as functions of the parameter c for different b and different 
sets of the quantum numbers m and q. 

CALCULATION OF THE FUNCTIONS II,,@; k,R) 

Two linearly independent solutions of Eq. (4a) can be presented as follows 
(t = 5 - 1). 

I72,9([; k, R) = ($ - I)nL/2 F(t), 

li$Fg([; k, I?) = (% - l)m/z G(t), 

where F(t) = F(c, 0). The function F(r, m) obeys the equation 

(1W 

(17b) 

t(t + 2) F” + 2(m + I)(t + 1) F’ + [c2t2 + (2c2 + a)t + a + m(m + 1) - A]F = 0, 

(18) 
and for t < 1, it is defined by the series 

F(t, v) = 1 gs(v) P+“, (19) 
a=0 

the coefficients of which satisfy the four-term recurrent relation 

Psgs+1 + 4.cg.3 + r.sg,-I + fsg,s-2 = 0, 

g-2 = g-, = 0, go = 1, 

ps = 2(v + s + l>(v + .s + m + 1), 
J,=(v+s)(v+s+2m+ I)-A+++m(m+ I), 

TR = 2c2 + a, 

i, = c2. 

(20) 

@a) 

(21) 

The nonregular solution is determined by the function F(t, V) with the aid of the 
formulas: For m # 0, 

G(t) = @lWKv + ml F(t, ~)ll,=-m . Wa) 
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For m = 0, 
G(t) = F(t) In t + (a/W F(t, v)/,=,, (2W 

The derivatives Z(t, v)/av are calculated with the account of Eqs. (19)-(21) as 
well as the conditions ag+/av = ag-,/av = ag,/av = 0. 

Using the representation (22) and the expansion (19) at the singular point t = 0, 
both solutions (17) of Eq. (4a) are found by means of direct integration. To ensure 
a relative accuracy of the calculation of the functions, E - lo-‘, it is sufficient 
to choose s2 = 4 and t = 1O-s, and the step of integration A[ = 0.002/c and 
A.$ = 0.02/c. In integrating Eq. (4a), the Numerov method was used [lo] which 
is more effective than the Runge-Kutta method. The sign of the functions 
L$&[; k, R) is determined from the requirement for them to be positive at 4 + 1. 

The normalization is fixed by the asymptotic behavior of the solution at ct > 1: 

i (5” - 1) IT,&; k, R) = A . Re i 
,[ 

s j 
1 + 1 gs(c&3] 

a=1 

. exp [ i 
--i cf + 5 ln 2c~ - y 7~ + &, . (23) 

Here, A,, = A&k, R) is the phase of the radial Coulomb spheroidal function 
that is analogous to the Coulomb phase crz = arg r(l + 1 - iy), y = Z/k in the 
scattering on the Coulomb attraction potential -Z/k. The following limiting 
relations take place. 

d&k, 0) = ut = arg r(l+ 1 - iy), y = a/2c, I = m + q. (24) 

The coefficients g,Y of the expansion (23) satisfy the six-term recurrent relation 
(Y = a/W 

qs + 1) gs+1 + [s(s + 1) - x - y2 + Qs + l>rl g, 
+ 2cyy - i2(s - I)] g,-, 

+ c2[-2(s - l)(s - 2) t X + 1 - m2 + 2y2 - i2(2s - 3)yj g,-, 

+ 2c4[-y + i(s - 3)1g,-, 
+ c4[(s - 3)(s - 4) - y2 + i(2s - 7)y] g,-, = 0. (25) 

The normalization A and the phase A,, are found from the condition of sewing 
the asymptotics of the solution (23) and its derivative at a point t* > 1 with 
the solution fl,&.$; k, R) and its derivative (a/@) 17,,((; k, R) found in the 
numerical integration of Eq. (4a). In order to ensure a relative accuracy E N lo-‘, 
when calculating A and A,, , it is sufficient to put s3 w 10 for 
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Within the limit R -+ 0, the two-center problem turns to a one-center problem 
with charge 2 = 2, + Z, , and Eq. (4a), after a scale transformation r = R[/2, 
turns to an equation defining the Coulomb functions F,(y, kr) and G,(y, kr) [6]. 
In this case, the wave function &,([, r), v; k, R), normalized by the condition (5), 
transforms to a normalized solution $rlnz(r) of the one-center problem [ll] 

hh(T) = W77)1/2 (l/r) NY, kr) Yh(R 9~)~ (26) 

where R.f/2 -+ r, 77 + cos 0 and Y&e, y) is the Legendre spherical function. 
By comparing the asymptotic of the functions 

F,(y, kr) - sin[kr + y In 2kr - (h/2) + 0~1 (27) 

with the expansion (23), we find that A = 1. For such a choice of A, the normaliza- 
tion coefficient N&k, R) of the solution (3) is 

Nmq = (2/R)(2/~)l/~. (28) 

This result follows immediately from the comparison of expressions (3) and (26), 
taking into account relations (15), (16), (23), and (27). 

Another derivation of the expression for Nmp is given in the paper by Bates 
et al. [2]. Figures 5a-5c give the regular solution n,,(t; k, R) normalized by the 

k=s R=5 

FIG. 5(a, b, c). The radial Coulomb spheroidal functions K&; k, R) normalized by the 
asymptotic condition n&p; k, R) - (i/f) sin(ct + (42~) In 2cl - (l?r/2) + dm) at fixed values 
k, R and different sets m and q; 2, = 1, Z, = 2. 
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FIG. 6. The phases of solutions of the radial equation A,,, = A,,&, R) as a function of R 
at different values of k. When R ---f 0 A ma coincides with the Coulomb phase of one-center problem 
with the charge Z = Z, + Z, : A&, 0) = arg r(l + 1 - (2, + Z,)/k). 

condition A = 1 for different k and R and different sets of m and q, Figure 6 also 
gives the phases d,,(k, R) as functions of the intercenter spacing R for different 
k-, q-, and m-values. 

The cross sections for scattering of electrons on two Coulomb centers [I] are 
expressed in terms of these phases. 

CHECKING OF THE ACCURACY OF CALCULATIONS 

For an additional verification of the accuracy of calculations, the eigenvalues 
of h&c, b) were compared with the analytic expressions X,*(0, b) that are known 
for definite values (e.g., X,&O, b = 1.27863) = 2. 

The criterion of the accuracy of calculation of the raditional functions was the 
condition of constancy of the Wronskian 

w = i;f,,(aGm,la[) - Gmn(alTmp/a() = const., (2% 
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where rr,, and G,, are defined by the relations 

(30) 

Condition (29) was satisfied in the calculations with a relative accuracy E 5 10-7. 
To verify the accuracy of calculations the number of the terms of the sums S, in 
expansions (12), (19), and (23), and the quantity cS* were varied. The values of 
these quantities given in this paper ensure the relative accuracy of calculation of 
the wave functions E - lo-‘. 

The accuracy of calculation of the angular functions X,&T; k, R) at kR 5 5 
was verified by comparing the values obtained as a result of integration of Eq. (4b) 
with the values given by the expansion 

E&q; k, R) = (1 - +)“I2 eic(lin) c c,(l & T)~. (31) 

While for kR > 5 near 77 = 1, the logarithmic derivatives obtained by the integra- 
tion of Eq. (4b) using the expansion (12) and those that follow from the expansion 
(12) after the replacement v-+ -7 were compared. 

For a global checking of the solutions constructed, the orthogonality condition 

(32) 

is used, where ylNl&, 7, v; R) is the wave function of the discrete spectrum of 
the two-center problem calculated earlier in [5]. The condition (32) was fulfilled 
in our calculations within an accuracy E - 10e7. 

Note Added in Proof: Reference [12], which contains similar results, appeared while this paper 
was in press. 
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